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Abstract

Four score and seven years ago. ..

1 Introduction

A chaotic pendulum is investigated. It consists of an aluminum disk with
uniformly-distributed mass M and radius R, to which is attached an eccen-
tric mass of mass m, at the edge of the disk. The setup is shown in Fig. 1.

Figure 1: The chaotic pendulum under investigation. The dashed circle
represents the permanent magnet for damping. The bottom end of spring 2
is fixed, while the bottom end of spring one is driven sinusoidally.



There is a permanent magnet held close to the disk, which generates eddy
currents and thus produces a (hopefully) linear damping force. The disk is
attached to a pulley of radius r, which has a string wrapped around it in
such a way as to avoid slipping. This string is attached to a spring on each
side. The spring on the left side has a spring constant ki, and the one on
the right has a spring constant ks. The far end of spring 2 is fixed. Finally,
the whole system is driven by means of a rotary motor fixed to the end of
spring 1, which drives the spring according to De ™™,

2 Equation of Motion

We will use a single generalized coordinate 6, which will describe the angle
between the vertical and the eccentric mass. We define 6 to be zero when
the eccentric mass is at the top of the disk, and be positive in the clockwise
direction (also shown in Fig. 1).

Observe that the moment of inertia I is

1
I= 5MR2 +mR2.
Thus the kinetic energy of the system is
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T=_-I6>=-(-MR? 2) 62,
3 0 3 <2 R +mR > 0

The potential energy of the system is the sum of the gravitational and spring
potential energies. Define the stretch of the springs when the eccentric mass
is in unstable equilibrium at the top of the disk to be x1 and x4, respectively.
Then the potential energy of the system is

1 . 1
U =mgRcosf + 5]{:1 (a;l +rf — De*m)2 + 5/@ (x9 — r0)2 )
At any equilibrium position, U’(6) is zero. Examination of U’(f) at the
unstable equilibrium at the top of the disk yields

U'(0) = mgRsin® — kyr (z1 + 10 — De™™") + kor (22 — 10)

U/(()) = —kix1 + koxog =0

kla:l = ]{221'2.
Here the drive has been omitted, as we take it to be at the center of its
displacement when the apparatus is balanced.

Note that the potential and kinetic energies do not account for damping.
This will be addressed shortly. The Lagrangian (sans damping) is

1. 1 . 1
L= 5192 — mgRcosf — 5/91 (xl +rf — D(f“’t)2 — ikg (zg — r0)2 .
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Euler’s equation shows

or_don oo
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The left-hand term is —cf because the external force from the damper will
eventually end up being proportional to the speed of rotation. This ¢ does
not correspond to the damping coefficient for the eddy current damper. And
the whole term is negative because the damping always opposes the motion
of the system.

The relationship between the spring constants and x;’s simplifies the
equation of motion to

—cf) = 16 — mgRsin 0 + (ky + ko)r20 — kyr De ™"

This is the equation of motion for the system.
This equation can be made dimensionless by defining wy = /g/R and
T = wot. Algebraic manipulation yields the dimensionless equation
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This is the dimensionless equation of motion for the system. However, we
hope to compare the behavior we predict based on the equation of motion
with the observed behavior of the system, and this comparison will be more
explicit if we instead use real (dimension-ful) time.

3 System parameters

Our project is based on an actual, physical system that is sitting in the
Modern Lab space downstairs. As such, we fixed most of our constants
to match the parameters of that system. Our hope is that the theoretical
predictions presented here can be compared with experimental results. Our



parameters are:

Mass of disk M 0.120 kg
Eccentric mass m 0.01454 kg
Radius of disk R 0.0475 m

Radius of pulley r 0.024 m
Left spring constant k; 3.12 N/m
Right spring constant ks 3.13 N/m

Acceleration due to gravity ¢ 9.81 m/s?
Damping constant ¢ 0.0001 kgm/s
Drive amplitude D 0.0254 m

where the damping constant was chosen somewhat arbitrarily and one of
the possible values of drive amplitude was chosen. We chose the value of ¢
based on approximate behavior of the system; that is with chaotic behavior
beginning and ending between 0 and 1 Hz. The parameter we will vary in
this investigation is the drive frequency, w.

4 Results

4.1 Equilibrum and Small Oscillations

The system, as one might gather from physical intuition, has an unstable
equilibrium position with the eccentric mass vertical, and two stable equi-
librium positions, one on each side. Graphing the potential energy as a
function of 8, with no drive amplitude, paints the picture we would expect,
as shown in Fig. 2. The potential energy increases as we wind the pendulum
up further, with small dips as the potential energy due to gravity fluctuates.
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Figure 2: Potential energy as a function of angular position

The equilibrium angles can be calculated based on our physical quanti-



ties; they are the values of 6 that solve
(k1 + k2)r20 = mgRsin()

which in our setup are +£1.82265 radians (and zero). The equilibrium point
at # = 0 is unstable, while the other two are the points of lowest potential
energy and are thus stable. We expect that oscillation will be around one of
these equilibrium positions or switching between them.

For small oscillations, we expect the mass to stay in one of the potential
wells, exhibiting simple periodic motion. By setting the damping term and
drive amplitude to zero, we can investigate a simple version of this system.
As shown in Fig. 3, a small displacement from the stable equilibrium in
either potential well results in motion that looks a lot like simple harmonic
oscillation.
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Figure 3: Angular position (blue) and velocity (red) as a function of time
for a small initial displacement from equilibrium without damping or drive.

4.2 General Behavior

Adding damping and drive, of course, make the system more interesting.
Fig. 4 shows some time traces of the motion for different drive frequencies.
At low frequencies, the eccentric mass stays in one well with complicated
but periodic behavior. As we increase frequency, we encounter some regions
where the mass periodically switches between positive and negative 6, regions
where it stays in one potential well, and eventually, we encounter a region of
chaotic motion. At the highest frequencies the physical system is built for
(around 1 Hz), the system goes back to periodic motion in one well.
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Figure 4: Angular position (blue) and velocity (red) for drive frequencies:
0.242 Hz (a), 0.405 Hz (b), 0.762 Hz (c), and 0.91 Hz (d). The third of these
shows chaos while the others are various types of periodic behavior.



4.3 Phase plots

The chaotic pendulum system may be viewed as traveling through the three-
dimensional phase space defined by the phase of the drive and the eccentric
mass’s angular position and velocity. The system is completely deterministic,
so if its location in phase space at a starting time is known, its behavior can
be predicted for all time. This means that if the path traced out by the
system in phase space crosses itself, it is bound to repeat periodically in a
closed loop.

A useful way of visualizing the motion of the system is using a phase plot,
which shows the bob’s angular velocity with respect to its angular position.
After an initial transient is allowed to die out, any periodic behavior will be
seen as a closed loop. An example of a phase plot of periodic behavior is
shown in part (a) of Fig. 5.

Nonperiodic behavior leads to a more dynamic phase plot. An example
phase plot of nonperiodic behavior is shown in part (b) of Fig. 5. Note
that the path can cross itself without becoming periodic because this two-
dimensional phase plot leaves out the phase of the driver, which is required
in order to fully describe the system’s behavior.
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(a) Periodic behavior (b) Nonperiodic behavior

Figure 5: Phase plot of the chaotic pendulum system. The plot shown in (a)
uses a driving frequency of 0.500 Hz and starts plotting after the transient
behavior has died out. It shows that the bob oscillates periodically between
the two potential wells. The plot shown in (b) uses a driving frequency of
0.700 Hz and exhibits nonperiodic behavior.



4.4 Poincaré plots

Phase plots are useful for examining system behavior over short periods of
time, but tend to get cluttered over longer periods of time. In such cases,
a Poincaré plot can be used to examine the system’s behavior. Poincaré
plots have the same axes as phase plots, but the position and velocity data
are only taken once per drive cycle. Thus, if the behavior is periodic with
frequency equal to the drive frequency, we expect our Poincaré plot will only
show a single dot - the system comes back to the same state after each drive
period. For chaotic motion, we expect many dots, as the motion is not really
periodic so the drive period will end with the system in a wide variety of
states. Fig. 6 shows Poincaré plots for several frequencies.

Part (a) of Fig. 6 shows a Poincaré plot of the system’s behavior at a
frequency of 0.100 Hz. At this frequency, the single dot on the Poincaré plot
makes it clear that the system behaves periodically, and that the system’s
frequency matches up with the drive.

Similarly, part (d) shows a Poincaré plot of the system’s behavior at a fre-
quency of 0.920 Hz. At this frequency, the system exhibits period doubling,
which means that the system’s period is twice the drive’s. This behavior is
manifested as bouncing up and down in a single potential well with two dif-
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Figure 6: Poincare plots for a variety of frequencies. Part (a) is a plot
of a frequency for which the system exhibits periodic behavior with a single
period. Part (d) is a plot of a frequency for which the system exhibits period
doubling. Parts (b) and (c) show Poincaré plots of chaotic behavior.



ferent peaks. One peak occurs when the drive is at its maximum amplitude,
and the other occurs when the drive is at its minimum.

Finally, parts (b) and (c) of Fig. 6 show Poincaré plots of the system
when it exhibits chaotic behavior. This behavior is clearly nonperiodic and
the Poincaré plots trace out beautiful loops.

4.5 Bifurcation diagrams

Bifurcation diagrams can be used in order to get a large-scale understanding
of a system. They show a set of points from Poincaré plots at a range of
frequencies and can give a good idea of boundaries of chaos, as well as regions
of period doubling. The large-scale bifurcation diagram, as well as a zoomed
version of a region of period doubling, are shown in Fig. 9. (Note: these are
large figures, so for ease of layout, they have been moved to the end of the
report.)

From the large-scale plot we see that the main chaotic region occurs at
frequencies between about 0.65 Hz to 0.86 Hz. At frequencies immediately
below the lower end of this chaotic behavior the system behaves periodically
with only one period, before which it exhibits some regional periodic and
chaotic behavior. At frequencies just above the primary chaotic boundary,
there is a region of bifurcation (shown in part (b) of Fig. 9).

This region of bifurcation contains successive ‘forks’ at which the number
of drive periods in a period of the system doubles. The frequencies at which
these forks occur is theoretically related by the first Feigenbaum constant,
which is defined as the ratio

fnfl - fan
fn - fnfl
where f; is the frequency of the " fork. It has a value of § ~ 4.669, inde-

pendent of the chaotic system under investigation. The detailed bifurcation
plot was examined to find approximate values for f; through f, of

f110.926 + 0.002 Hz
f210.902 £ 0.002 Hz
f3 1 0.898 £ 0.002 Hz
fa | 0.897 £ 0.002 Hz

The uncertainties on these values are large because we found the bifurcation
frequencies by eyeballing the bifurcation plot. While we attempted to find
the branching frequencies more accurately, the ‘clutter’ in the bifurcation
region made this very difficult.

Based on these values, Feigenbaum’s first constant was calculated as
6.0 4.3 for n = 3. While the uncertainty on this number is large for the
reasons discussed above, it should still be noted that the true value of the
first constant falls squarely in the ranges for both ‘experimental’ values.



5 Comparison to Experiment

Since we have access to the physical system modeled in this report, some
limited comparisons could be made between what our model predicts and
what we observed experimentally. As mentioned previously, most parame-
ters should be the same in experiment and model. However, the damping
constant was not determined very precisely in experiment, and so our model
and the physical system have only a similar order of eddy-current damp-
ing constant. The drive amplitude on the experimental setup could also be
adjusted, which our discussion will take into account.

5.1 Onset of Chaos

A benefit of the bifurcation plot is the ease with which the frequency at
which chaos begins can be identified. In part (a) of Fig. 9, the onset of chaos
is the frequency at which the dense region begins, around 0.672 Hz.

While it is easy to identify the approximate onset of chaos by just ‘eye-
balling’ the bifurcation plots, it is difficult to find a unique onset of chaos by
use of a script, because the lower chaotic boundary is itself chaotic. For the
purposes of the plots below, the ‘onset’ was taken to be the first non-isolated
vertical band in the bifurcation plot.

The onsets of chaos in our theoretical predictions compare closely with
the experimental values for the onset of chaos. Rough plots comparing the
frequencies at which chaos begins in the physical system (a) and the predic-
tions from our model (b) are shown in Fig. 7. The frequencies at which chaos
begins are similar between theory and experiment, but the drive amplitudes
at which these frequencies of onset occur are slightly offset.

This difference can be accounted for by changing our damping constant,
which we chose arbitrarily.

5.2 Qualitative Comparison of Poincaré Plots

The Poincaré plots produced by our simulation were compared to the Poincaré
plots from the experimental setup in the Sophomore Lab. The Poincaré plots

are shown in Fig. 8. They appear qualitatively similar. It is possible that

adjusting the damping constant as discussed above would improve the re-

semblance.

6 Conclusion

The behavior of a sinusoidally-driven chaotic pendulum has been investi-
gated for a variety of drive frequencies. The system exhibits chaotic be-
havior, as shown in the phase plots, Poincaré plots, and bifurcation dia-
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grams. Branching behavior was observed for frequencies just over those in
the chaotic region. Feigenbaum’s first constant was calculated from the
model (with huge uncertainty) and it seems at least plausible that the
branching in the bifurcation plot obeys Feigenbaum'’s predictions. The range
of frequencies at which chaotic behavior was predicted to begin aligned well
with the observed onset of chaos, but the drive amplitudes that generated
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Figure 7: Plots of the frequencies at which chaotic behavior begins in the
(a) physical and (b) theoretical systems. The trends seem to be offset by an
amplitude of about 0.2 to 0.3 inches, which is somewhat concerning.
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these onset frequencies were offset by around 0.2 inches.
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(a) 0.720 Hz, experimental data
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(b) 0.720 Hz, theoretical predictions

Figure 8: Comparison of Poincaré plots. Part (a) shows the experimental
Poincaré plot for the system driven at 0.720 Hz. Part (d) shows the theoret-
ical predictions for the system at a driving frequency of 0.720 Hz. The plots
look quite similar.
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7 Appendix: Bifurcation Plots
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Figure 9: Bifurcation diagrams over the full range of frequency (a) and a
smaller region of interest (b).
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